Multiple monotone positive solutions of integral BVPs for a higher-order fractional differential equation with monotone homomorphism

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monotone and Concave Positive Solutions to a Boundary Value Problem for Higher-Order Fractional Differential Equation

and Applied Analysis 3 Definition 2.2 see 12 . The Caputo fractional derivative for a function y : 0,∞ → R can be written as D 0 y t 1 Γ n − α ∫ t 0 t − s n−α−1y n s ds, 2.2 where n α 1, α denotes the integer part of real number α. According to the definitions of fractional calculus, we can obtain that the fractional integral and the Caputo fractional derivative satisfy the following Lemma. Lem...

متن کامل

Multiple monotone positive solutions for higher order differential equations with integral boundary conditions

where n ≥ , f : [, ]× (R+)n– → R+ is continuous in which R+ = [,+∞), A and B are right continuous on [, ), left continuous at t = , and nondecreasing on [, ], withA() = B() = ; ∫   v(s)dA(s) and ∫   v(s)dB(s) denote the Riemann-Stieltjes integrals of v with respect to A and B, respectively. Boundary value problems (BVPs for short) for nonlinear differential equations arise in m...

متن کامل

Existence and iteration of monotone positive solutions for third-order nonlocal BVPs involving integral conditions

This paper is concerned with the existence of monotone positive solution for the following third-order nonlocal boundary value problem u′′′ (t)+f (t, u (t) , u′ (t)) = 0, 0 < t < 1; u (0) = 0, au′ (0) − bu′′ (0) = α[u], cu′ (1) + du′′ (1) = β[u], where f ∈ C([0, 1] × R+ × R+, R+), α[u] = ∫ 1 0 u(t)dA(t) and β[u] = ∫ 1 0 u(t)dB(t) are linear functionals on C[0, 1] given by Riemann-Stieltjes inte...

متن کامل

Positive solutions for higher - order nonlinear fractional differential equation with integral boundary condition ∗

In this paper, we study a kind of higher-order nonlinear fractional differential equation with integral boundary condition. The fractional differential operator here is the Caputo’s fractional derivative. By means of fixed point theorems, the existence and multiplicity results of positive solutions are obtained. Furthermore, some examples given here illustrate that the results are almost sharp.

متن کامل

Monotone Solutions of a Higher Order Neutral Difference Equation

A real sequence {xk} is said to be (∗)-monotone with respect to a sequence {pk} and a positive integer σ if xk > 0 and (−1)∆(xk − pkxk−σ) ≥ 0 for n ≥ 0. This paper is concerned with the existence of (∗)-monotone solutions of a neutral difference equation. Existence criteria are derived by means of a comparison theorem and by establishing explicit existence criteria for positive and/or bounded s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Difference Equations

سال: 2016

ISSN: 1687-1847

DOI: 10.1186/s13662-016-0743-4